Kronecker Coefficients for Some Near-rectangular Partitions

نویسنده

  • VASU V. TEWARI
چکیده

We give formulae for computing Kronecker coefficients occurring in the expansion of sμ ∗ sν , where both μ and ν are nearly rectangular, and have smallest parts equal to either 1 or 2. In particular, we study s(n,n−1,1) ∗ s(n,n), s(n−1,n−1,1) ∗ s(n,n−1), s(n−1,n−1,2) ∗ s(n,n), s(n−1,n−1,1,1) ∗ s(n,n) and s(n,n,1) ∗ s(n,n,1). Our approach relies on the interplay between manipulation of symmetric functions and the representation theory of the symmetric group, mainly employing the Pieri rule and a useful identity of Littlewood. As a consequence of these formulae, we also derive an expression enumerating certain standard Young tableaux of bounded height, in terms of the Motzkin and Catalan numbers. An outstanding open problem in algebraic combinatorics is to derive a combinatorial formula to compute the Kronecker product of two Schur functions. Given partitions λ, μ and ν, the Kronecker coefficients, g μν , occur in the decomposition of the Kronecker product sμ ∗ sν of Schur functions in the Schur basis. sμ ∗ sν = ∑

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On rectangular Kronecker coefficients

We show that rectangular Kronecker coefficients stabilize when the lengths of the sides of the rectangle grow, and we give an explicit formula for the limit values in terms of invariants of sln.

متن کامل

Quasipolynomial formulas for the Kronecker coefficients indexed by two two – row shapes ( extended abstract )

We show that the Kronecker coefficients indexed by two two–row shapes are given by quadratic quasipolynomial formulas whose domains are the maximal cells of a fan. Simple calculations provide explicitly the quasipolynomial formulas and a description of the associated fan. These new formulas are obtained from analogous formulas for the corresponding reduced Kronecker coefficients and a formula r...

متن کامل

Kronecker coefficients: the tensor square conjecture and unimodality

We consider two aspects of Kronecker coefficients in the directions of representation theory and combinatorics. We consider a conjecture of Jan Saxl stating that the tensor square of the Sn-irreducible representation indexed by the staircase partition contains every irreducible representation of Sn. We present a sufficient condition allowing to determine whether an irreducible representation is...

متن کامل

Rectangular Symmetries for Coefficients of Symmetric Functions

We show that some of the main structural constants for symmetric functions (Littlewood-Richardson coefficients, Kronecker coefficients, plethysm coefficients, and the Kostka–Foulkes polynomials) share symmetries related to the operations of taking complements with respect to rectangles and adding rectangles.

متن کامل

Unimodality via Kronecker Products

We present new proofs and generalizations of unimodality of the q-binomial coefficients ( n k ) q as polynomials in q. We use an algebraic approach by interpreting the differences between numbers of certain partitions as Kronecker coefficients of representations of Sn. Other applications of this approach include strict unimodality of the diagonal q-binomial coefficients and unimodality of certa...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014